Solvable Points on Genus One Curves over Local Fields
نویسندگان
چکیده
Let F be a field complete with respect to a discrete valuation whose residue field is perfect of characteristic p > 0. We prove that every smooth, projective, geometrically irreducible curve of genus one defined over F with a non-zero divisor of degree a power of p has a solvable point over F .
منابع مشابه
Solvable Points on Projective Algebraic Curves
We examine the problem of finding rational points defined over solvable extensions on algebraic curves defined over general fields. We construct non-singular, geometrically irreducible projective curves without solvable points of genus g when g is at least 40 over fields of arbitrary characteristic. We prove that every smooth, geometrically irreducible projective curve of genus 0, 2, 3 or 4 def...
متن کاملSolvable Points on Genus One Curves
A genus one curve defined over Q which has points over Qp for all primes p may not have a rational point. It is natural to study the classes of Q-extensions over which all such curves obtain a global point. In this article, we show that every such genus one curve with semistable Jacobian has a point defined over a solvable extension of Q.
متن کامل0 The Number of Rational Points On Genus 4 Hyperelliptic Supersingular Curves
One of the big questions in the area of curves over finite fields concerns the distribution of the numbers of points: Which numbers occur as the number of points on a curve of genus g? The same question can be asked of various subclasses of curves. In this article we classify the possibilities for the number of points on genus 4 hyperelliptic supersingular curves over finite fields of order 2, ...
متن کاملThe cyclomatic number of connected graphs without solvable orbits
We study the combinatorics of constructing non-singular geometrically irreducible projective curves that do not admit rational points over finite solvable extensions of the base field. A graph is without solvable orbits if its group of automorphisms acts on each of its orbits through a non-solvable quotient. We prove that there is a connected graph without solvable orbits of cyclomatic number c...
متن کاملOn the maximum number of rational points on singular curves over finite fields
We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.
متن کامل